Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 7: 1339193, 2024.
Article in English | MEDLINE | ID: mdl-38690195

ABSTRACT

Background and objective: Due to the high prevalence of dental caries, fixed dental restorations are regularly required to restore compromised teeth or replace missing teeth while retaining function and aesthetic appearance. The fabrication of dental restorations, however, remains challenging due to the complexity of the human masticatory system as well as the unique morphology of each individual dentition. Adaptation and reworking are frequently required during the insertion of fixed dental prostheses (FDPs), which increase cost and treatment time. This article proposes a data-driven approach for the partial reconstruction of occlusal surfaces based on a data set that comprises 92 3D mesh files of full dental crown restorations. Methods: A Generative Adversarial Network (GAN) is considered for the given task in view of its ability to represent extensive data sets in an unsupervised manner with a wide variety of applications. Having demonstrated good capabilities in terms of image quality and training stability, StyleGAN-2 has been chosen as the main network for generating the occlusal surfaces. A 2D projection method is proposed in order to generate 2D representations of the provided 3D tooth data set for integration with the StyleGAN architecture. The reconstruction capabilities of the trained network are demonstrated by means of 4 common inlay types using a Bayesian Image Reconstruction method. This involves pre-processing the data in order to extract the necessary information of the tooth preparations required for the used method as well as the modification of the initial reconstruction loss. Results: The reconstruction process yields satisfactory visual and quantitative results for all preparations with a root mean square error (RMSE) ranging from 0.02 mm to 0.18 mm. When compared against a clinical procedure for CAD inlay fabrication, the group of dentists preferred the GAN-based restorations for 3 of the total 4 inlay geometries. Conclusions: This article shows the effectiveness of the StyleGAN architecture with a downstream optimization process for the reconstruction of 4 different inlay geometries. The independence of the reconstruction process and the initial training of the GAN enables the application of the method for arbitrary inlay geometries without time-consuming retraining of the GAN.

2.
J Dent ; 145: 104988, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38608832

ABSTRACT

OBJECTIVES: This study aims to explore and discuss recent advancements in tooth reconstruction utilizing deep learning (DL) techniques. A review on new DL methodologies in partial and full tooth reconstruction is conducted. DATA/SOURCES: PubMed, Google Scholar, and IEEE Xplore databases were searched for articles from 2003 to 2023. STUDY SELECTION: The review includes 9 articles published from 2018 to 2023. The selected articles showcase novel DL approaches for tooth reconstruction, while those concentrating solely on the application or review of DL methods are excluded. The review shows that data is acquired via intraoral scans or laboratory scans of dental plaster models. Common data representations are depth maps, point clouds, and voxelized point clouds. Reconstructions focus on single teeth, using data from adjacent teeth or the entire jaw. Some articles include antagonist teeth data and features like occlusal grooves and gap distance. Primary network architectures include Generative Adversarial Networks (GANs) and Transformers. Compared to conventional digital methods, DL-based tooth reconstruction reports error rates approximately two times lower. CONCLUSIONS: Generative DL models analyze dental datasets to reconstruct missing teeth by extracting insights into patterns and structures. Through specialized application, these models reconstruct morphologically and functionally sound dental structures, leveraging information from the existing teeth. The reported advancements facilitate the feasibility of DL-based dental crown reconstruction. Beyond GANs and Transformers with point clouds or voxels, recent studies indicate promising outcomes with diffusion-based architectures and innovative data representations like wavelets for 3D shape completion and inference problems. CLINICAL SIGNIFICANCE: Generative network architectures employed in the analysis and reconstruction of dental structures demonstrate notable proficiency. The enhanced accuracy and efficiency of DL-based frameworks hold the potential to enhance clinical outcomes and increase patient satisfaction. The reduced reconstruction times and diminished requirement for manual intervention may lead to cost savings and improved accessibility of dental services.

SELECTION OF CITATIONS
SEARCH DETAIL
...